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ABSTRACT 

It  is well known [BF] that in the constructible universe (V = L) the class 

of Bl-groups is closed under prebalanced subgroups.  A similar attempt at  

the increasing countable unions of prebalanced subgroups has been done 

in [B]. Here we give an affirmative answer to a similar question concerning 

the so-called PB~176  

I n t r o d u c t i o n  

All groups in this paper are abelian. If x is an element of a torsion-free group G 

then ]XlG, or simply Ixl, is the characteristic, and t v ( x )  = t (x)  is the type, of z in 

G. The letter G will usually denote a general torsion-free group, while the letter 

B will be used for Butler groups. For unexplained terminology and notation 

see IF]. As usual, (GCH) denotes the g e n e r a l i z e d  c o n t i n u u m  h y p o t h e s i s ,  

i.e. 2 ~ = ~+ for each infinite cardinal ~. By a s m o o t h  ( i n c r e a s i n g )  u n i o n  
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(.Jo<~ Go o f  a g r o u p  G, we mean the union of a collection of pure subgroups 

Go indexed by an initial segment of ordinals with the property that  G~ < G~ 

when j3 < a and G~ = ~-J~<o G~ whenever a is a limit ordinal. Especially, by 

a c o u n t a b l e  u n i o n  o f  a g r o u p  G is meant any union G = (-Jn<~ G~ of pure 

subgroups, where G,~ _< Gn+l for each n < w. 

An exact sequence E: 0 --* H --* G ~-~ K --* 0 with K torsion-free is b a l a n c e d  

if the induced map j3.: Horn(J, G) --~ Horn(J, K) is surjective for each rank one 

torsion-free group J. Equivalently, E is balanced if all rank one (completely 

decomposable) torsion-free groups are projective with respect to E. A torsion- 

free group B is said to be a B l - g r o u p  ( B u t l e r  g ro u p )  if Bext(B, T) = 0 for all 

torsion groups T, where Bext is the subfunctor of Ext consisting of all balanced- 

exact extensions. It is known [BS] that  this definition coincides with the familiar 

one if B has finite rank, i.e. a pure subgroup of a completely decomposable 

group, or, equivalently [Bu], a torsion-free homomorphic image of a completely 

decomposable group of finite rank. 

Recall that  a subgroup H of a group G with a torsion-free quotient G/H is 

called p r e b a l a n c e d  if for each rank one (pure) subgroup J of G/H there is a 

pair (X, 4)) consisting of a finite rank completely decomposable group X and a 

homomorphism r X --* G such that ~ r  = J ,  ~ being the canonical projection 

G ---* G/H. Equivalently (see [FMe]), a pure subgroup H of a torsion-free group 

G is prebalanced if and only if for each g E G there are a non-zero integer rn 

and a finite subset {h0 , . . . ,  h,~} C U such that t(g + H) = (Ji~=0t(mg + hi). An 

exact sequence 0 --* H 2 .  G ~-~ K --, 0 is prebalanced if aH is a prebalanced 

subgroup of G. For the sake of brevity, we shall say that  a subgroup H is G-pure 

if it is pure in G. Similarly we shall use the terms G-balanced, G-prebalanced, 

etc. 

Another relevant concept in the study of infinite rank Butler groups is the 

t o r s i o n  e x t e n s i o n  p r o p e r t y  (TEP).  A pure subgroup H of a torsion-free group 

G is said to have TEP  in G, or briefly, H is TEP(-subgroup) in G, if every 

homomorphism H --* T with T torsion extends to a homomorphism G ~ T .  

It is well known [BF; Th.4.5] that,  in the constructible universe, 

the prebalanced subgroups of Bl-groups are B:-groups and the same 

(cf. [DHR; Cor.5.9]) holds for groups of cardinalities < R~ under (CH). More- 

over, in [B] a condition (PB~) ensuring the existence of "enough prebalanced 

subgroups" for groups up to the cardinality ~ has been introduced and it was 
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proved that under this condition countable unions of prebalanced subgroups of 

Bl-groups are Bl-groups for the groups of cardinalities up to n. As a corollary 

one obtains the same result for groups of cardinality at most ~ under a weaker 

hypothesis (CH). 

Since any smooth increasing union [.J~<~ Ha of prebalanced subgroups of a 

torsion-free group G is prebalanced whenever cof A ~ w, this result gives a 

solution for each smooth increasing union of prebalanced subgroups. 

Dugas, Hill and Rangaswamy [DHR] introduced the class of B~-subgroups of a 

torsion-free group G as a smooth union of the classes of B~'-subgroups for # < wl, 

where the class of B~ consists of all balanced subgroups of G and 

the class of B~'+Lsubgroups is formed by taking unions of increasing countable 

chains of BU-subgroups. Replacing in this definition the balanced subgroups by 

the prebalanced ones, we obtain the class of PB~-subgroups.  Owing to the 

construction of this class it is natural to ask whether the members of this class 

in a Bl-group are again Bl-groups. 

The purpose of this paper is to give an affirmative answer to this question 

in the constructible universe (V = L) for general groups, and, under (CH), for 

groups of cardinalities _< R,o. But if G is a Bl-group with [G I <_ ~1, then no 

additional set theoretic hypothesis is needed and we show, under ZFC, that a 

PB~176 (indeed, any preseparative subgroup) of G is again a Bl-group. 

There are two substantial techniques used in the proof of the results mentioned 

above. The first one, used by Fuchs and Magidor in [FMa], is the exploitation 

of Jensen's box principle [ ~ ,  while the second one, developed by the first author 

in [B], combines the construction of prespecial subsets with the construction of 

prebalanced subgroups given in [DHR]. 

1. Pre l iminar ies  

First, we shall collect some results which will be useful in the sequel. 

1.1 LEMMA: he0 # H < G, then there is a balanced subgroup L of G with 

H < L and] L [ <_ [H [~o. 

Proof: See [DHR; L.5.2]. | 

1.2 LEMMA: Let A be a limit ordinal and H = (J~<:~ Ha be a smooth increasing 

union such that H~+I is prebalanced in G for all a < A. I fcof  A ~ w then H is 

prebatanced in G. 
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Proof'. See [B; L.2.4]. II 

1.3 LEMMA (GCH): Let G be a torsion-free group and X c_ G be a subset of 

infinite cardinality not cofinal to w. Then there is a (pre)balanced subgroup H 

of a such that X C_ H and IXl = Inl. 

Proo~ For IXl regular it suffices to use Lemmas 1.1 and 1.2. So, let IXl = 

~ < x  na be singular, where A = col IXl > ~ and to0, ~ + 1  are regular for each 

a < A. Write X as a smooth union X = [.Ja<~ X~, where IX~l = ~o for each 

a < A. By Lemma 1.1, we take H0 to be a prebalanced subgroup of G containing 

X0 and having cardinality no. Let a < A be arbitrary and assume that for each 

3 < a the subgroup HZ of cardinality ~Z containing X~ has been constructed 

in such a way that HO = [-JT<~ H7 for f~ limit and Ha+l is prebalanced in G 

whenever fl + 1 < a. For ~ limit we simply set Ha = [-Ja<a HZ, while for 

a = • + 1 we select a prebalanced subgroup Ha of G of cardinality n~ containing 

H~ tO Xa Setting H = H~ = (.J~<~ Ha we see that X C H, IXl = In l  and H is 

G-prebalanced by Lemma 1.2. | 

1.4 LEMMA: Let E: 0 --* A --* B --~ C ~ 0 be an exact sequence of torsion-free 

groups. 

(i) I f  E is TEP and B a Bl-group, then C is a Bl-group; 

(ii) if E is prebalanced and C is a Bx-group, then E is TEP.  

Proo~ See [FMe; Prop. 2.1]. II 

1.5 PROPOSITION: Let B = [J~<x B~, A a limit ordinal, be a smooth union of 

pure and Bl-subgroups of a torsion-free group B. If, for each a < A, B~ is TEP  

in Bo+I, then B is a Bl-group. 

Proo~ See [BB; Prop. 2.2]. II 

2. PB~-subgroups and Hill's compatibility 

The following class of subgroups in the balanced case has been introduced and 

investigated in [DHR]. 

2.1 Definition: Let G be a torsion-free group. By induction on ordinals # < a)l, 

we define the PB' -subgroups  of G. The PB~ of G are precisely the 

prebalanced subgroups of G. If-it < wl is a l imit ordinal, then PB~-subgroups 

are all the subgroups of G that are PB~-subgroups for some v < it. The P B  ~+l- 

subgroups are the unions of countable increasing chains of PB~'-subgroups. A 
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subgroup H of G is called a PB~ if it is a PBU-subgroup for some 

# < wl. For this situation we shall also use the notation H E ?vBU(G) or 

H �9 P t ~ ( G ) .  

2.2 Definition: Let G be a torsion-free group. For K �9 7aB~176 define a 

(countable) collection M ( K )  of subgroups of G inductively as follows: 

(1) if K �9 Pl3~ then we set ~4(K)  = {K}; 

(2) i f #  < wl and K �9 P B ' + I ( G )  say, K = U ,<  K,~ with K ,  � 9  then 

we set M ( K )  = {g}  U Un<~ M(Kn) .  

If /C is any collection of PB~176 of G then we set M(/C) = 

UKc~ M(K). 
Finally, if H _< G and /C is any collection of PB~176 of G, then 

H + A/[(/C) means {H + K I K �9 A4(/C)}. 

2.3 Definition: If K is a PB~176 K of a torsion-free group G, then d(K)  

denotes the first (necessarily non-limit) ordinal # < wl such that K �9 PB'(G) .  

2.4 LEMMA: Let K be a PB~-subgroup and A = Um<~ Am a smooth increasing 

union of subgroups of a torsion-free group G such that Am + K is a PB~-subgroup 

of G for each a < A. / f c o f  A ~ w and d(A~+l + L) < d(L) for each a + 1 < A 

and each L �9 M ( K ) ,  then A + L �9 PB~176 and d(A + L) <_ d(L) for each 

L �9 A,i(g).  

Proo~ Let K �9 PB~(G). We use transfinite induction on #. Suppose # = 0 

so that d (K)  = 0. Then Am+l + K is G-prebalanced for each a + 1 < A and 

Lemma 1.2 applies. Suppose # > 0 and assume the assertion holds for all P B  ~ 

subgroups K with d(K)  </~. In view of the definition of the PB~176 

we may assume, without loss of generality, that # is a non-limit ordinal, say, 

p = ~,+ 1 for some v _> 0. Then K = U,~<~K,~ where Kn �9 PI3V(G) and 

A4(K) = U,,<~ A//(Kn) u {K}. Consequently, for each n < ~ and for each 

L �9 A~(Kn) C M ( K ) ,  we have Am+l + L �9 PB~176 with d(A~+l + L) _< d(L) 

and this, by induction hypothesis, yields that A + L �9 7)B~(G) with d(A + L) < 

d(L). In particular, d(A + K . )  _< d ( K , )  _< v so that A + K = U,<~(A + K~) �9 

PB~+I(G). We are done since M ( K )  = U,<~ .hi(K,,) U {K}. 1 

In the next definition, the concept of compatibility, as defined in [AH] and 

[DHR], is modified slightly to handle prebalancedness (see also [B]). We shall, 

however, use the same notation [I. 
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2.5 Definition: If A, B are two subgroups of a torsion-free group G, then A[[B 

will mean that A + B is pure in G, and for each a E A and for each b E B, there 

is 0 < m < w and {Co,.. . ,c, ,} C A O B such that 

n 

t (a  + b) < U t (ma + ci). 
i=O 

If B is a PB~176 of G, then we shall simply write AIIAA(B ) instead 

of AIIK for each K E AA(B). Moreover, for an arbitrary collection ~ of P B  ~ 

subgroups of G, the symbol All)el(K: ) means AIIK for each K E A4(~). 

The following properties have been presented in [B]. 

2.6 LEMMA: Let A, B be subgroups of a torsion-free group G. Then 

(i) if  A]]B then B]IA; 

(ii) i f  A <_ B then AIIB; 

(iii) i f  A = U~<x Am, B = U.<~ B~ are smooth unions and A~[IB~, for each 

a < A, then A[IB; 

(iv) in particular, if B = U~<~ Bo and A[[Br for each a < A, then AIIB. 

2.7 LEMMA: I f  B is G-prebalanced and A[[B, then A n B is A-prebalanced. 

Proof" See [B; L.2.8], or [DHR; L.7.2] in the "balanced" case. I 

2.8 LEMMA: I f  B E "PB~(G) for some ordinal v and A is a subgroup of G such 

that AI[B, then A n B E PI3~(A). Moreover, d(A N B) _< d(B).  

Proof." We apply transfinite induction on u. The case when u = 0 has been 

treated in Lemma 2.7. Suppose u > 0 and assume the lemma holds for all # < u. 

The case when v is a limit ordinal presents no difficulty. So let u = # + 1 and we 

can also assume that u = d(B). Then B = U,<o, B,~ with B,~ E Pt3~'(G). Since 

AIIA/I(B, ) for each n < ~, the induction hypothesis yields that  AN B,~ E 7)I3~'(A) 

and d(A N B,~) < d(Bn) _< #. Then A n B = U,<~,(A M Bn) E 7:'B'+I(A) and 

d(A cl B) _< # + 1 = d(B). I 

2.9 LEMMA: I f  A[[B and A + B[[C, then B[[A + C. 

Proof See [B; L.2.8], or [DHR; L.7.2] in the "balanced" case. I 
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3. Prespecial subsets and PB~ 

Let K be a pure subgroup of a completely decomposable group C = (~ieM Xi 

with Xi rank one and torsion-free. For each J C_ M we shall use the following 

notations: 

C ( J ) = ( ~ X i ,  K ( J ) = C ( J ) N K  
iEJ 

and ~i: C ~ Xi will denote the canonical projection. 

3.1 Definition: Let K be a pure subgroup of a completely decomposable group 

C ---- ~ iEM Zi. A subset J c_ M is said to be K-prespecial if C(J)I[K. If K is 

a PB~-subgroup  of C, then we say that J is M(K)-prespecial  if C(J)[]Ad(K). 

Moreover, for an arbitrary collection ~ of PB~-subgroups  of C, we say that J 

is M(K:)-prespecial if C(J)HA/[(~ ). 

3.2 LEMMA: Let ~ be a countable collection of PB~-subgroups of a completely 

decomposable group C = (~i~M Xi. If X C_ C is any infinite subset, then there 

is a subset J C_ M such that [J] = [X[, X c_ C(J) and J is AA(lE)-prespecial. 

Proo~ See [B; L.3.2]. | 

3.3 Definition: Let ~ be any collection of PB~-subgroups  of a torsion-free group 

G. We say, that a subgroup H of G is an .~(]C)-subgroup if 

(1) H [[ A~l(~); 

(2) H + K  is a PB~-subgroup  of G and d ( H + K )  _< d(K)  for each K E A4(K:). 

Moreover, if instead of (2), 

(2+) H + K is a PB~-subgroup of G and d (H + K) _< d(K)  + 1 for each 

K �9 M ( ~ )  

holds, then we say that H is an A4+(~)-subgroup of G. 

3.4 LEMMA: Let t: be any collection of PB~ and A = U~<~ A~ be 

a smooth increasing union of subgroups of a torsion-free group G. If A~+I is an 

A4(l~)-subgroup of G for each a + 1 < A, then A is an A4(lE)-subgroup of G 

whenever cof A r w and it is an M+(l~)-subgroup of G otherwise. 

Proof'. The condition (1) follows immediately from Lemma 2.6. An appeal to 

Lemma 2.4 proves (2) in the case cof A ~ w, while the case cof A = w is easy to 

verify. II 
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3.5 Definition: Let /C be any collection of PB~ of a completely 

decomposable group C = ~ i c M X i .  We say that J C_ M is an z~4(/E)-set 

(M+(/C)-set) if C ( J ) i s  an J~4(/C)-subgroup (A/l+(IC)-subgroup) of C. 

3.6 LEMMA (GCH): Let K be prebalanced subgroup of a completely 

decomposable group C = ~ iEM xi" I f  X C C is any subset of uncountable 

cardinality not cofinal to w, then there is J C_ M such that ]J] = fXI, X C_ C(J)  

and C( J) + K is C-prebalanced. 

Proof: Set J0 = {i �9 M ] ~i (X)  # 0}. If J~ with IJ~l = IX I has been 

constructed for some a < wl, then we have [(C(J~) + g ) / g [  <_ [C(J~)[ = IX[ 

and consequently, by Lemma 1.3, there is a C/K-prebalanced subgroup L ~ / K  

containing (C(J,~) + K ) / K  and of cardinality not exceeding IXI. Clearly we can 

write n~ = L~ + K, where [L~[ _< [n~/g] = IX[ and we set 

J,~+, = J~ U {i E M [ ~i(L~) ~ 0}. 

If a < Wl is limit and J~ has been defined for all B < a with Jr  C_ J~ for 

< ~3 < a,  then we set J~ = LJ~<~ J~. 

Obviously, the union J = [-J~<~l J~ is of cardinality [X[ and C(J)  + K = 

U~<,~I(C(J~) + K)  < [,J~<~l L~ < LJ~<~(c(J~+l )  + K)  = C(J)  + g is C- 

prebalanced by Lemma 1.2. | 

3.7 LEMMA (GCH): Let C = ~ i e M  Xi be a completely decomposable group 

and K E PB~(C) for some ordinal v. I f  X C C is any subset of uncountable 

cardinatity not cofinal to ~, then there is a J C_ M such that I JI = IX[, X c_ C( J) 

and C(J)  + K is a PB~176 of C with d(C(J)  + K)  <_ d(K).  

Proof'. We apply induction on v, the result being true when v = 0 by Lemma 

3.6. We need only consider the case when v is not a limit ordinal, say, v = p + 1. 

We may also take d(K)  = # + 1. Then K = LJ,~<~ K~ with d ( K , )  _< #. Now, for 

each n < w, we can construct a subset J~ of M such that  [J,~[ = IX I, X C_ C(J,~), 

J .  C_ J,~+l, and C(J~) + K ,  is a PB~-subgroup of C with d(C(J,~) + K~) _< 

d(gn) .  If we set J = U,,<~ Jn, we see that C(J)  + K = LJn<~(c(J~) + K~) E 

p .+l (c). m 

3.8 LEMMA (GCH): Let tC be a set ofPB~176 of a comptetely decompos- 

able group C = ~ i e M  Xi with [/El < RI. I f  X C C is any subset of uncountable 
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cardinality not cofinal to w, then there is J c_ M such that [J[ = IX[, X C_ C(J) ,  

and d(C(J)  + K) _< d(K) for each K E M(/C). 

Proof Since [Ad()E)[ _< R1 and since there are lql-many pair-wise disjoint cofinal 

subsets of wl, we may assume that {K~ [ a < Wl} is an arrangement of elements 

of A4 (IC) in which each distinct member of 2M (/~) occurs uncountably many times 

indexed by a cofinal subset of Wl. Set Jo = {i E M ] ~i(X) r 0}. If a < ~vl is 

limit and Jz with cardinality IX[ has been defined for all/3 < a in such a way 

that J'r C_ J~ whenever -/ <_ ~3 <: a, then we set J~ = (.J~<~ J~. If a = /3 + 1 

and J~ is defined with [J~[ = [X[, then by Lemma 3.7 there is Jz+l C_ M such 

that ]J~+l[ -- [X],C(J~) <_ C(J~+l) and d(C(J~+l) + K~) _< d(K~). Now if we 

set J = u~<~,~J~, then obviously ]J[ = IX[ and X C_ C(J).  If K E A4(/C) is 

arbitrary, then there is a cofinal subset {i~ [ a < ~1} C_ wl such that Ki ,  = K 

for each a < Wx. Now the equality C(J)  + K -- [ .J~<~(C(Ji .+l)  + K) shows 

that d(C(J)  + K) _< d(K) owing to Lemma 2.4. | 

4. T h e  key  resu l t s  

4.1 LEMMA (GCH): Let IC be a countable collection of PB~ of a 

completely decomposable group C = (~)ieM Xi. I f  X C_ C is an3" subset of 

uncountable cardinality not cofinal to w, then there is J C_ M such that 

(i) X C_ C(J)  and ]J] - - IX[;  

(ii) J is an M(lC)-set. 

Proof." Set J0 h = J P - -  (i E M [ qai(X) ~ 0} and assume that the sets J~ , J~  

have been defined for each /3 < a < wl in such a way that they are all of the 

same cardinality IX[ and J~ C_ J~. For a = ~ + 1 there is, by Lemma 3.2, 

JP C_ M of cardinality (X t containing J~ and such that JP is Ad(i~)-prespecial. 

Further, Lemma 3.8 yields the existence of J~ C M of cardinality IX] containing 

J~ and such that d (C(J  h) + K) _< d(K) for each K E A4(/E). For a limit 

ordinal a < Wl, we simply set jh  = j~ = [.j~<, j~  = [.jZ<, j~. Finally we set 

J = [-J-<~l J~ = [-J-<~l jh .  Then for each K E A4(/C) we have d(C(J)  + K) = 

d([.J~<~, (C(J  h) + K))  <_ d(K) by Lemma 2.4 and so (ii) is true. The proof is 

complete, (i) being obvious. | 

4.2 LEMMA (GCH): Let ]E be a countable collection of PB~ of a 

completely decomposable group C = (~iEM Xi O[ the cardinality [M[ which is 
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not a successor of  a cardinal of  cofinality w. Then M is a smooth increasing 

union M = U~<~ J~, X = cof ]MI, such that, for each a < A, ]J~l < IM], J~ 

is an A4+(tC)-set or an A4(/C)-set according as cof a = w or not and J~+l is a 

(C(J~) + Ad(/E))-set. 

Proof'. For [M[ limit we can write [M[ = ~-~'.~<~ n~, where n0 and n~+l are 

uncountable regular cardinals for each a < A. If [M[ = A = n + with cof n r w, 

we set n~ = n for each a < A in this case. So, in both cases we can write 

M = [.J~<x I s ,  where [I~[ = n~ for each a < A. According to Lemma 4.1 we 

select J0 C_ M containing Io of the cardinality n0 and we shall continue by the 

transfinite induction. 

For a limit we simply set J~ = U~<~ J~ and Lemma 3.4 shows tha t  J~ is an 

A/i(/C)-set whenever c o l a  r w. The case ofcof  a = w is obvious. I f a  = 7 + 1  and 

J r  is defined as an 2~4(/C)-set containing I v and IJ~[ -- n-r, then we select J~ to 

be a subset of M corresponding to/C U (C(J~) + Ad(K:)) and X = C(J~ U I~) by 

Lemma 4.1. Then J~ is obviously an Ad(~)-set as well as a (C(J~) + Ad(/E))-set 

and the proof is finished. | 

As was mentioned in [FMa], the main difficulty in our inductive argument lies 

at the cardinality which is the successor of a singular cardinal of cofinality w. As 

in the cited paper  we shall need the following Jensen's Principle holding in the 

constructible universe. 

D~: If n is a singular cardinal, then there exists a family of sets D~, indexed 

by limit ordinals a < n +, such that  

(i) D~ is closed and unbounded in a; 

(ii) the order type of D~ is < n; 

(iii) D~ = D~ N/3 whenever/~ is a limit point of D~ (coherence property).  

If n is of cofinality w, then n = ~ m < ~  nm, where n,~ are regular cardinals 

(cf. [J]). Now we are ready to present the crucial step in deriving our result. 

4.3 LEMMA (V -- L): Let ~ be a countable collection of  PB~ of  a 

completely decomposable group C = ~ i e M  Xi  of  cardinality n +, where n is 

singular with cofn  = w. Then M is a smooth increasing union M = U~<~+ J~, 

such that [J~[ = n, J~ is an A4+(tC)-set and J~+l is a (C(J~) + A4+(/C))-set for 

each a < n +. 

Proof  We shall essentially follow the ideas of the proof of the key lemma 3.1 

in [FMa]. Let M -- {m~ [ a < n +} be a well-ordering of elements of M. 
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We are going to show that  M can be written as a smooth increasing union 

M = Uo<~+ J~ in such a way that  

(1) J~ = (J,~<~ J ~  such that  J ~  C_ j ~ + l  and [J~] = ~,~ for all a < ~+ and 

m ~ w ;  

(2) for every Z < a < g+, J ~  C_ J ~  if m < w is large enough; 

(3) i f a = ~ + l ,  t h e n m ~ e  J~ and J~C_ J ~  for e a c h m < w ;  

(4) i f a  = ~ + 1  and ~ is a limit ordinal such that  the order type of D~ is _> gin, 

then J~ '  = J ~ ;  

(5) if ~3 is a limit point of Do, then J~+l C_ J2 '  for each m < w; 

(6) if ~ is a limit point of Do and if the order type of D~ is _> am, then 

J ;  = J : ;  

(7) J ~  is an J~(/C)-set for each m < w and for each a <: ~+ such that  either 

(i) col a ~ w or (ii) cof a = w and the set of limit points in D~ is bounded 

in a; otherwise J ~  is an A4+(/g)-set. 

(8) J~+l is a (C(J~)  + A4(/C))-set for each m < ~ and each a < ,~+ for which 

either (i) cof a ~ w or (ii) cof a = ~ and the set of limit points in Do is 

bounded in a; otherwise it is an (C(J~)  + Y~4+(/C))-set. 

We apply induction on a. 

CASE 1: Let a = 0. For e a c h m  < w, set Mm = {mo l a  <,~,~}. Now we 

take J0 ~ according to Lemma 4.1 corresponding to X = C(Mo). Assuming J ~  

has been defined for some m < w, we select j ~ + l  according to Lemma 4.1 for 

X = C ( J ~  tJ Mm+l). Setting J0 = [.Jm<~ J ~ ,  the assertions (2) - (6), (8) are 

vacuous in this case, while the other ones are trivial. 

CASE 2: a is a limit ordinal and the set of limit points in Do is bounded in a.  

In this case, Jensen's principle (i) implies that  the order type of D~ is ~ + w, 

where either ~ = 0 or ~ is a limit ordinal. In particular, cof a = w. Set r] to 

be the largest limit ordinal in D~ (it is the 5-th term) if it exists and set ?7 -- 0 

otherwise. 

Put  ~0 = ?7 + 1 and choose a sequence ~0 < ~1 < "'" of successor ordinals 

tending to a.  Let m0 be the smallest t with 5 < at. If  mi-1  has been defined, 

then since j3~ satisfies (2) by induction, we can take m~ to be the smallest integer 

with m~ > m~_ 1 and 

J~C_J~ for a l l j < i a n d m > _ m i  
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(such mi exists since, by induction, ~i satisfies (2)). This way we obtain the 

sequence {rnili < w}. 
Now we set 

{ jm if r e < t o o ,  j m  = ~o 

jm if mi < m < mi+l for some i < w, f~i 

and then define J~ = Um<~ J~" 

We shall verify the smoothness. Clearly, J~ -- (-Jm<~ J ~  C_ [.Jm<~ Ui<~ J~, c_ 

[.J~<~ (.Jm<~ J ~  = Uz<~ J~. Conversely, if x E JZ for Z < a, we have x E J ~  for 

suitable m < ~. There is a j < r with ~ < ~j and so x E J ~ .  Now there exists i 

such that mi _ m < mi+l and, without loss of generality, we could assume that 

j < i. N o w J ~  C_ J ~ =  J~m C J~. 
Turning to (1), for a given m, let i be such that mi _< m < mi+l. For 

m + 1 < m~+l we have J ~  = J ~  C_ j ~ + l  = j ~ + l ,  while for m + 1 = mi+l we 

get .1~ = J ~  _C j ~ + l  = j~,+1 _- j ~ + l .  

As for (2), let ~ < a be arbitrary. Then ~ < ~j for some j < w, J ~  C_ J ~  for 

m large enough and it suffices to show that J ~  C_ J ~  for m >_ mj.  But there is 

j _ < i < w w i t h m i < _ m < m i + l a n d s o J ~ C _ J ~ = J ~ .  

We next verify (5) since (3) and (4) are vacuous in this case. If ~ is a limit 

point of D=, then ~ _< q. If/3 = q, then for m < m0 we have J~+~ = J~o = jm  

by the choice of ~o. Further, mi <_ m < mi+a yields J~+, = J~o C_ J ~  = J ~  

and we are done. Suppose B < ~?. In this case ~ is a limit point of D n -- D~ n ~, 

hence, by the induction hypothesis, J~+l C_ J ~  C_ J ~ l  -- J~o C_ J ~  for each 

m < w by (3) and the above part. 

In order to check (6), recall that mo was chosen as a minimal t with ~f < nt 

and ~? is the 3-th term in D~. Hence ~i is the order type of D n. If ~ is a limit 

point of D(~, then the order type of DZ = D~ N f~ is at most 6 and so if it is 

_ '~m, then necessarily rn < mo. If ~ < ~, then ~ is a limit point of Dn and so 

J ~  = J ~  by the induction hypothesis. For ~ = 7/the inequality m < mo and 

(4) yields J~' = J~+l = J~o = J~" 

Finally, (7) and the first assertion are trivial by the choice of J ~  and the 

induction hypothesis, while (8) and the second assertion are vacuous in this case. 

CASE 3: a is a limit ordinal and the set La of limit points in D~ is unbounded 

in a. We now define 

J ~ =  U J'~+l and J,~= U J~ m. 
BEL~ m < w  
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Observe that if ~ /</3  in L~, then ~, is a limit point of D~ and so, by (5) and 

(3), J~"~l _C J ~  C J~+l for each m < w and that the smoothness immediately 

follows from the definition of J~. 

m _ lm+l  = j ~ + l  for As for (1) we clearly have J2 : UBELo d~n+l C UIyEL. ~13+1 
each m < co and we are going to verify the cardinality property. Again, let t be 

the smallest integer such that the order type of D~ is < ~t. For re _> t we see 

that J ~  = Ufl~L~ J~n+l is a union of at most ~ sets of cardinalities ~m, hence 

IJ~[ = ~m. If m < t, then the order type of Do is > ~,,.  Let /3 be the ~m-th 

member of Do and let/~ < -y e L~. Then D~ = D~ N/3 yields/3 E L~ and so 

(4) and (6) give J~+l = J ~  = jm~ = J~+l from which it clearly follows that 

IJ~[ = ~m. Moreover, J ~  = J ~  proves (6). 

To verify (2), take/3 < a arbitrarily. There is a "~ E Lo such that /3  < ~, < a, 

and so J ~  _c J ~  for re large enough by the induction hypothesis. However, 

J ~  C J~"~l C jm  by (3) and the definition of jm 
We are going to prove only the first assertion of (7) because (3), (4), (8) and 

the second assertion of (7) are vacuous in this case, while (5) is an immediate 

consequence of the definition of J~ .  In view of the hypothesis in Case 3, we need 

only consider the case when cof(o) r co. The condition (1) from Definition 3.3 

follows immediately from induction and Lemma 2.6. In view of the definition of 

J ~  and the inductive hypothesis, an appeal to Lemma 3.4 shows that J ~  is an 

3A (/C)-set. 

CASE 4: a = j3 + 1. For ~ non-limit we set t = 0, and if/3 is a limit ordinal, 

let t be the smallest integer such that the order type of D~ is < ~t (which exists 

by [3~ (ii)). 

If re < t, we set J ~  = J~ .  Suppose re _> t. We define J ~  to be the set J given 

by Lemma 4.1 where we take for X the set X = C(J~-IUJ'~U{m~}) (assuming 

obviously j~-i = 0) and for the family /C we make the following choices: If 

cof/3 r w or if cof/3 = co and the set L z of limit points in Do is bounded in/3, 

then take/C u (C(J~") + Ad(/C)) in place of tC in Lemma 4.1. If/3 is the limit of 

a sequence {~3k [ k < co} C_ n~, then take/C u Uk<~(C(J~'~+l) + Ad(/(:)) for the 

family/C in Lemma 4.1. Finally we set J~ = Um<~ J~ .  We need to verify all 

the properties stated. 

If j3 is a limit ordinal and the order type of DZ is > ~m, then m < t, and 

J ~  = J ~  by the construction and so (4) holds. The conditions (5), (6) are 

vacuously true and the remaining conditions are easy to verify. I 
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4.4 PROPOSITION (V----- L): Let ]C be a countable collection of PBCC-subgroups of 

a completely decomposable group C = t~)ieM Xi. Then M is a smooth increasing 

union M = U~<~ J~, A = cof [M[, such that IJal < IMI, J~ is an A4+(K:)-set 

and Ja+l  is an (C(Ja) + .M+(K:))-set for each a < A. 

Proo~ An immediate consequence of two preceding lemmas. | 

5. M a i n  r e su l t s  

5.1 THEOREM (V --- L): Any PB~-subgroup of a completely decomposable 

group is a Bl-group. 

Proof: Proving indirectly, let us suppose that C = ~ i e M  Xi is a completely 

decomposable group of the smallest possible cardinality ~ = [M] containing a 

PBW-subgroup K which is not a Bl-group. By [BS], ~ > Ro. 

By Proposition 4.4 we have M = U~<~ J~, A = cof ~r and [J~] < to. Since 

C(J~)[[3A(K), g (J~)  = C(J~)n  g is a PB~176 of C(J~) by Lemma 2.8 

and consequently it is a Bl-group by the choice of K.  

The desired contradiction can be obtained from 1.5 provided we show that  

K(J~) is T E P  in K(J~+I) for each a < A. Now C(J~)IIK and so Lemma 2.7 

yields that  K(J~) is K-prebalanced and consequently it is K(Jo+l)-prebalanced.  

Looking at Lemma 1.4(ii) we infer that it suffices to Show that K(J,~+I)/K(J~) 

is a Brg roup .  

The direct summand C(J~) is trivially T E P  in C(J~+I) n (C(J~) + K) 

and so, in view of Lemma 1.4(i) and the fact that  K(J~+I) /K(J~)  = 

(C(J~+I) N K) / (C(J~)  n K)  ~- ((C(J~+l)  n K)  + C(J~))/C(J~),  it suffices to 

show that  (C(J~+I) o K)  + C(J~) = C(J~+I) O (C(J~) + K)  is a Bl-group. But 

C(J~) + K is a PB~176 of C, J~+l is a (C(J , )  + .M+(/C))-set and so 

C(J~+I) n (C(J~) + K)  �9 PI3~176 by Lemma 2.8. Hence it is a Bl-group 

by the choice of K. This means K is a Bl-group - -  a contradiction. | 

5.2 LEMMA: Let 
E: 0 ) K  , D  , A  , 0  

F : 0  ~ K  ~ C  , B  ~0  
be a commutative diagram with exact rows, F prebalanced and e the inclusion 

map. Then A e :P Be~ ( B ) if and only if D �9 P B~176 ( C). Moreover, we have d(A) = 

d(D) in this case. 
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Proo~ Clearly, from the prebalancedness of F we infer that  D is C-prebalanced 

if and only if A is B-prebalanced and so the assertion holds for d(A) = d(D) = 0. 

So, if A E 7)B' (B)  (D E P B ' ( C ) ) ,  we can use transfinite induction on #. In 

view of the definition of the PB~~ we may assume, without loss of 

generality, t ha t /~  is a non-limit ordinal, say, # = v q- 1 for some v _> 0. Then 

A = ~Jn<w A,~ (D = (.Jn<~ D,~) with d(A~) < v (d(Dn) < v) for each n < ~. 

Thus d ( D , )  = d(An) for each n < w by the induction hypothesis and so d(D) = 

d(A) = v + 1 = #, as desired. | 

Our next result is a direct generalization of [BF; Th.4.5] and it is closely related 

to [B; Th.8.3]. 

5.3 THEOREM (V -- L): Any PB~176 of a Bl-group is a Bl-group. 

Proof: Let A be a PBCC-subgroup of a Bl-group B. Considering the com- 

mutat ive diagram from the preceding lemma where F is a balanced-projective 

resolution of B, we see that,  in view of Lemma 1.4, both E and F are prebalanced 

and TEP. Since D is a PB~176 of C by Lemma 5.2, D is a Bt-group by 

Theorem 5.1 and Lemma 1.4 finishes the proof. | 

The following result generalizes [DHR; Cor.5.9] and [B; Th.8.6]. 

5.4 THEOREM (CH): Any PB~176 of a Bl-group of cardinality not 

exceeding R~ is a Bl-group. 

Proof'. Under this cardinality restriction, (CH) is enough in the proof of Lemma 

4.2 which is clearly sufficient in the proof of Theorem 5.1. | 

Finally, if B is a Bl-group of cardinality _< bh, then Theorem 5.3 holds with- 

out any additional set-theoretical hypothesis. Since a PB~176 is always 

preseparative, we establish this result as a consequence of the following more 

general theorem which is valid under ZFC. 

5.5 THEOREM: Suppose there is a smooth preseparative chain A = Ao <_ . ' .  <_ 

Ao <_ . . . B  = (Jo<~ A~ with A~+1/A,  countable for each a < A. H B is a 

Bl-group, then so is A. 

Proof'. For any torsion group T, suppose for some a > 0 we have a balanced 
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exact sequence 0 --* T --* Ha ~ ,  A~ ~ 0. Consider the diagram 

0 , T  

! 
0 , T  

K K 

l ! 
H ~ @ C  ~ A o @ C  , 0 

1 1 
H a + l  ' A~+I  , O,  

Isr. J. Math. 

where C is a countable completely decomposable group and K a B2-group by 

[BF]. So there is a homomorphism K ~ H~ @ C which, composed with ~ @ 1c, 

equals the embedding of K into A~ �9 C. Let H~+I = (H~ • C ) / K .  The bottom 

row is clearly balanced. Thus we get a direct system of balanced exact sequences 

0 -~ T --+ H~ ~ A~ --* 0, where the balancedness at limit ordinals follows from 

the fact that the A~ are all torsion-free and pure in A~+I. For the same reason, 

the direct limit 0 -~ T -~ H --, B --* 0 is balanced exact and hence splits. This 

means that each A~ and, in particular, A is a Bl-group. | 

Remark: The proof of the above theorem follows the ideas from the paper of 

Fuchs and Viljoen [FV]. 

5.6 THEOREM: If  B is a Bl-group and A is a preseparative subgroup with 

[B/A I <_ Ra, then A is a Bl-group. 

Proo~ Let A = A0 _< A1 _< .-" _< A ,  _< . - . , a  < Wl, be an ascending chain 

of pure subgroups so that B = U~<~  Aa, and, for each a, Aa+I/A~ is count- 

able. Now each A~ is preseparative as a countable extension of a preseparative 

subgroup and Theorem 5.5 applies. | 

5.7 COROLLARY: In a Bl-group B of cardinality at most lql every preseparative 

subgroup (in particular, any PB~176 is again a B~-group. | 
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